

DEVELOPING FINANCIAL WEATHER DERIVATIVES FOR PRAIRIE FARMERS

Peter Bell, Robyn McGregor, G Cornelis van Kooten, and Emma Wilson Departments of Economics and Geography University of Victoria

Poster-02-2013 January 2013

Peter Bell, Robyn McGregor, G Cornelis van Kooten, and Emma Wilson

Departments of Economics and Geography, University of Victoria

Introduction

Weather index resolves adverse selection & moral hazard.

Linking Environment &

Agriculture Research Network

Objective

Develop weather insurance products that benefit farmers. Model demand for insurance and optimal choice.

Findings

Modified GDD should be used. Farmers can benefit from spending roughly \$10/acre.

Study Area – Where

Explore weather insurance for Spring Wheat.

Figure 1. Lower SK RMs Used

Equations – What Equation 1 defines our modified GDD measure. $Eq.1: GDD*_{n} = \sum_{i=1}^{n} 0.5[\min(34, T_{i}^{\max}) + \max(8.9, T_{i}^{\min})] - 8.9$

Key Observation - Why

Figure 2. Relationship Between GDD* and Yield

Sample has good spatial extent.

Equation 2 defines our expected utility framework. $Eq.2: E(U(R)) = E(R) - \Theta V(R), \Theta \in (0.05, 0.20)$

Equation 3 defines farm revenue with a call option. $Eq.3: R = PY(G) + q[d(G-G)^+ - C]$ Revenue without insurance.

Net option payoff (Strike \overline{G} , Quantity q)

Case Study: RM 5 – Estevan, Saskatchewan

Demonstration of how options affect utility.

Figure 3. Probability of GDD* and Revenue

Figure 3 shows that options can *flatten payoff*, which benefits risk averse agents. Shows example of a call that flattens payoff (Red Line) with *high probability mass*. To calculate Figure 3, use best fit line from Fig. 2 and net option payoff from *Eq.3*.

Figure 5. Varying the Call Strike

Exogenous Variables: Strike 800 in Fig. 4, Quantity 0.1 in Fig. 5, Risk Aversion 0.1.*

50

Figure 6 compares historical revenue with no insurance against optimal insurance. The optimal insurance choice is: *Strike 800, Quantity 0.14* (reported in Table 1). Insurance compensates for low yield in some years at small cost in other years, which is evidence that weather insurance can be used to benefit farmers (**Objective**).

Conclusions

Cost to farmers				Benefit to farmers		
RM	Strike	Quantity	Cost (\$) (q * C)	Change Mean $(\Delta E(R))$	Change Variance $(\Delta V(R))$	
5	800	0.14	9.37	8.82	-102	
11	800	0.14	9.56	8.95	-103	
18	800	0.16	10.65	10.01	-225	
67	800	0.18	15.44	14.77	-298	
72	890	0.38	4.56	3.71	-198	
Shows that weather insurance can benefit farmers.						

 Table 1: Province-wide Optimal Insurance Choices

Affordable: The amount of money Farmers spend in optimum seems affordable without subsidies (Table 1).

Feasible: Existing network of weather stations makes implementation feasible across province (Figure 1).

Innovative: Modified GDD has strong relation to yield (Figure 2).

Further Work: Model supply of insurance (reinsurance) - Extend to different crops and varieties - Explore different economic theory for insurance demand.

